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Visualizing Nonlinear Vector Field Topology
Gerik Scheuermann, Heinz Krüger, Martin Menzel, and Alyn P. Rockwood

Abstract—We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in
Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with
the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that
these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an
appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the
algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a
detailed description of the algorithm and a basic introduction to Clifford algebra.

Index Terms—Vector field topology, Clifford algebra, visualization.
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1 INTRODUCTION

HE topology of vector fields has received a lot of atten-
tion in the visualization community since its introduc-

tion by Helman and Hesselink [5], [6]. One reason is its ca-
pability to reduce the amount of information in the field so
that an understanding of the whole structure becomes pos-
sible. All algorithms start with a piecewise linear or bilinear
interpolation of the data at certain grid positions. Then, one
looks for all the saddle points and starts the numerical
computation of the separatrices from there. One gets a
graph with vertices at the zeros and separatrices as edges
which is called topological skeleton.

The problem we faced with this method is the fact that
the piecewise linear or bilinear interpolation destroys the
topology if there are higher-order singularities or close
critical points present. This can also affect the global topol-
ogy by destroying elliptic sectors where the integration
curves tend back to their starting point. Our solution is
based on the idea that the local approximation of the field
has to depend on the possible local topological structure.
We look at the linear approximation and check if nonlinear
local behavior is present, especially higher-order singulari-
ties. If present, we choose a polynomial approximation of
suitable degree in this area to be able to detect the nonlinear
behavior. If not, we just keep the linear approximation of
the vector field. This keeps the algorithm fast, because, in
typical applications, one will not have nonlinear local be-
havior in most grid cells.

We think that [14] was the first paper dealing with the
visualization of higher-order singularities. In the next sec-

tion we describe some of the changes in the topology in this
case. There is also an example which has been visualized by
a nice program from Bhinderwala [2]. A different interest-
ing aspect of the topology of vector fields is the relation
between the Euler characteristic of the space and the indices
of the singularities in the vector fields given by the Poin-
caré-Hopf theorem in Section 3.

The polynomial approximation is based on results about
the Clifford algebra description of vector fields. Because
this is a nearly unknown subject in the computer graphics
and visualization community, we give a basic introduction
in two sections. This knowledge is then used to show new
results about vector fields which have been proven partly
in [15]. These new insights opened the way for an algo-
rithm dealing with higher-order singularities. It starts with
a piecewise linear interpolated unstructured grid and looks
for regions with close singularities. Then, the approxima-
tion in these regions is replaced by a polynomial approxi-
mation of sufficient degree to model possible higher-order
singularities. Finally, the resulting topological graph is
visualized with an extension of the usual algorithm. The
last section gives some examples and shows aspects of
nonlinear behavior.

2 VECTOR FIELD TOPOLOGY

The question in vector field topology is the qualitative be-
havior of the integration curves. The theory was introduced
by Poincaré at the end of the last century after his observa-
tion that a direct computation of the solution curves by
power series may fail [12], [13]. The easiest curve is just a
point occurring at a zero in the vector field. These points
are also called critical points. To understand their role in the
field, one looks at their Poincaré-index or winding number.
It counts the number of turns of the field around the zero as
can be seen in Fig. 1 in the case of a saddle point.

Most of the other integration curves start at such posi-
tions and tend to other critical points or the boundary. If
one can continuously transform one curve into another
curve, one says that these two curves have the same quali-
tative structure. The basic idea is now to find regions of the
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same qualitative behavior, called basins. In a 2D vector
field, the border of a basin consists of integration curves
which are called separatrices. One can find them by looking
for curves starting at the saddle points if only simple criti-
cal points are present.

If higher-order critical points are present, one has to do a
little bit more, but the procedure is similar. The separatrices
now start at points with negative index, and these points are
sometimes called higher-order saddles. In our polynomial
case, there are again only a finite number of them, so one can
still draw them. Fig. 2 may now illustrate the topology with
higher-order local behavior. The separatrices starting at the
monkey saddle are in light blue and the other separatrices
appear darker to show the effect of the separatrices starting
at this point of higher negative index in the field topology.

3 SPACE TOPOLOGY AND VECTOR FIELDS

The possible topology of a vector field depends on topologi-
cal properties of the manifold where it is defined. This sec-
tion introduces the necessary topological definitions and re-
sults. For a more detailed description, one may look into [10].

A topological space X homeomorphic to the interior &Dn

of the unit disc is called an n-cell. One looks for a decompo-
sition of the whole space into such elements.

A cellular decomposition of a manifold X is a set of sub-
spaces of X with the following properties:

1)� X ee C= ¶U  and e > e′ = ∅ for e ≠ e′
2)�Every e ∈ C is an |e|-cell, |e| ∈ N.
3)�For each e ∈ C, there exists a map φe : D

n → X, n = |e|,

so that f e
nD&  is a homeomorphism of &Dn  and e and

f e
n n

e C e nS X e( ) : ,
- -

�¶ � � -´ = �1 1
1U .

Xn−1 is called (n − 1)-skeleton of the cellular decomposition.
Such a cellular decomposition is called CW-

decomposition if

(C) for every e ∈ C is e  a subset of a finite union of cells
in C.

(W) A subset A ⊂ X is closed if and only if A e¯  is
closed in e e C" ¶ .

Fig. 3 gives an example for a torus.
The Euler characteristic χ(X) of X is then defined as

c aX q
q

q

0 5 0 5= -
=

�

Í 1
0

,       (1)

where αq is the number of q-cells in X. The Euler character-
istic does not depend on the CW-decomposition.

A connection between the indices of a vector field and
the Euler characteristic of the manifold is given by the fol-
lowing theorem.

THEOREM 1 (Poincaré-Hopf). Let M be a compact oriented n-
manifold and v : M → TM a smooth vector field with iso-
lated zeros. The sum of the indices at the zeros equals the
Euler characteristic of M:

ind Mz
z M¶
Í = c0 5 (2)

v z0 5 = 0 .

PROOF. [17, pp. 35-41]. o

Fig. 1. Winding number of a saddle point.

Fig. 2. Topology with higher-order local behavior. Fig. 3. CW-decomposition of a torus.
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4 CLIFFORD ALGEBRA

Clifford algebra is a way to extend the usual description of
geometry by a multiplication of vectors. We give a basic
introduction in the two-dimensional case, but it can be done
in any dimension.

We start with a usual vector v ∈ R2. Together with the
Euclidean standard basis {e1, e2}, it can be written as

v = v1e1 + v2e2. (3)

The standard description as a column vector gives

v v v= �� �� + �� ��1 2
1
0

0
1

= ���
�
��

v
v

1

2
.                (4)

If we would use square matrices instead, we could take

v v v= �� �� + -
�� ��1 2

0 1
1 0

1 0
0 1

= -
�
��

�
��

v v
v v

2 1

1 2
.       (5)

This looks a little bit strange, but it allows a matrix multi-
plication of vectors.

vw
v v
v v

w w
w w= -

�
��

�
�� -
�
��

�
��2 1

1 2

2 1

1 2

= + -
- +

�
��

�
��

v w v w v w v w
v w v w v w v w

1 1 2 2 2 1 1 2

1 2 2 1 1 1 2 2
.       (6)

With a suitable choice of the remaining two basis vectors of
the square matrices, we get

vw v w v w= + �� �� +1 1 2 2
1 0
0 12 7

v w v w1 2 2 1
0 1
1 0- -�� ��2 7 .   (7)

With the terms

1 1 0
0 1

0 1
1 0: := �� �� = -�� ��i ,            (8)

we end up with a four-dimensional algebra G2 with the
following rules for the multiplication

1ej = ej      j = 1, 2    (9)

ej1 = ej      j = 1, 2  (10)

12 = 1 (11)

e jj
2 1 1 2= = , (12)

i2 = −1               (13)

e1e2 = −e2e1 = i.   (14)

The following projections are useful for computations

<⋅>0 : G2 → R ⊂ G2

a1 + be1 + ce2 + di ° a1         (15)

<⋅>1 : G2 → R2 ⊂ G2

a1 + be1 + ce2 + di ° be1 + ce2    (16)

<⋅>0 : G2 → Ri ⊂ G2

a1 + be1 + ce2 + di ° di.                   (17)

From (7), we also get for two vectors v, w ∈ R2 ⊂ G2

vw = (v • w) + (v ∧ w),        (18)

where • is the usual scalar product and ∧ the outer product
of Grassmann. Now, we have got a unification of these two
products into an associative multiplication.

In [16], one can find constructions like this one for every
dimension n by using 2n-dimensional subalgebras of a
complex matrix algebra Mat(m, C). These algebras are mod-
els for a Clifford algebra describing n-dimensional Euclid-
ean space. More details can be found in the literature, [3],
[7], [16].

In our 2D-case we have another important fact: Because
of (13), one can interpret the elements

a1 + bi ∈ G2           (19)

of our algebra as the complex numbers, but with the un-
usual interpretation as scalars plus bivectors.

5 CLIFFORD ANALYSIS

After extending the structure of the linear algebra, one may
also change the analysis. This leads especially to a differen-
tial operator that does not depend on the coordinates as we
demonstrate below.

Our maps will be multivector fields

A : R2 →G2

r ° A(r).   (20)

A Clifford vector field is just a multivector field with values
in R2 ⊂ G2

v : R2 → R2 ⊂ G2

xe1 + ye2 ° v1(x, y)e1 + v2(x, y)e2.       (21)

The directional derivative of A in direction b ∈ R2 is defined
by

A r A r b A rb0 5 2 7 0 5= + -
�

lim
e e

e
0

1
.             (22)

This allows the definition of the vector derivative of A at r ∈ R2

�A r R G0 5 : 2
2�

r A r g A rk
g

k
k

a � 0 5 0 5=
=
Í

1

2

.         (23)

This is independent of the basis {g1, g2} of R2. The vectors

g
i

g g
i

g1
2

2
1= =g g    (24)

with

g1 ∧ g2 = γ i      (25)

are called reciprocal vectors.
For a vector field v : R2 → R2, one gets, in Euclidean co-

ordinates,
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�v v v i= +div curl 0 5 0 51 . (26)

So, this differential operator integrates divergence and ro-
tation.

The integral is defined as follows:

Let M ⊂ R2 be an oriented r-manifold and A, B : M → R2 be
two piecewise continuous multivector fields. Then, one
defines the integral

AdXB
M

       (27)

as the limit

lim
n i i i

i

n

A x X x B x
��

=
Í 2 7 2 7 2 7D

0

,      (28)

where ∆X(xi) is a r-volume in the usual Riemannian sense.
This allows the definition of the Poincaré-index of a vector
field v at a ∈ R2 as

inda S
v i

v dv

v
=

Á
�

lim
e e0 2

1
2 1p ,      (29)

where Se
1  is a circle of radius e around a.

6 THEORETICAL RESULTS

For our analysis of vector fields, it is necessary to look at
v : R2 → R2 ⊂ G2 in suitable coordinates. Let z = x + iy,
z x iy= -  be complex numbers in the algebra. This means

x z z= +
1
2 0 5         (30)

y i z z= -
1
2 0 5 .         (31)

We get

v r v x y e v x y e

v z z i z z

iv z z i z z e

0 5 1 6 1 6
0 5 0 5

0 5 0 5

= +

= + -
�
��

�
�� -

�
!  

+ -
�
��

�
��
"
$##

1 1 2 2

1

2 1

1
2

1
2

1
2

1
2

, ,

,

,

= E z z e,0 5 1,        (32)

where

E C C G

z z v z z i z z

:

, ,

2
2

1

1
2

1
2

� ´

+ -
�
��

�
��0 5 0 5 0 5a

- + -
�
��

�
��iv z z i z z2

1
2

1
20 5 0 5,           (33)

is a complex-valued function of two complex variables. The
idea is now to analyze E instead of v and get topological
results directly from the formulas in some interesting cases.

Let us first assume that E and v are linear.

THEOREM  2. Let

v r az bz c e0 5 1 6= + + 1 (34)

be a linear vector field. For |a| ≠ |b|, it has a unique zero
at z0e1 ∈ R2. For |a| > |b|, has one saddle point with in-
dex −1. For |a| < |b|, it has one critical point with index
1. The special types in this case can be obtained from the
following list:

1)�Re(b) = 0 ⇔ circle at z0.
2)�Re(b) ≠ 0, |a| > |Im(b)| ⇔ node at z0.
3)�Re(b) ≠ 0, |a| < |Im(b)| ⇔ spiral at z0.
4)�Re(b) ≠ 0, |a| = |Im(b)| ⇔ focus at z0.

In Cases 2-4, one has a sink for Re(b) < 0 and a source for
Re(b) > 0. For |a| = |b|, one gets a whole line of zeros.

PROOF. A computation of the derivatives of the components
v1, v2 and a comparison with the well-known classifi-
cation gives this result. o

We included this easy theorem to show that this de-
scription gives topological information more directly. Let us
look now at the general polynomial case.

THEOREM 3. Let v : R2 → R2 ⊂ G2 be an arbitrary polynomial

vector field with isolated critical points. Let E : C2 → C be

the polynomial, so that v r E z z e( ) ( , )= 1 . Let Fk : C
2 → C,

k = 1, …, n be the irreducible components of E, so that

E z z Fkk

n
( , ) =

=½ 1
. Then, the vector fields wk : R

2 → R2,

wk(r) = Fk(r)e1 have only isolated zeros z1, …, zm. These are
then the zeros of v and for the Poincaré-indices we have

ind indz z k
k

n

j j
v w=

=
Í

1

. (35)

PROOF. The wk have only isolated zeros because, otherwise,
v would also have no isolated zeros. It is also obvious
that a zero of a wk is a zero of v and a zero of v must
be a zero of one of the wk.

For the derivatives, we get

�
�

�
�

E
z

a
F
z

Fk

k

n

l
l l k

n

=
= = ¡
Í ½

1 1,

  (36)

�
�

�
�

E
z

a
F
z

Fk

k

n

l
l l k

n

=
= = ¡
Í ½

1 1,

.   (37)

For the computation of the Poincaré-index, we as-

sume zj = 0 after a change of the coordinate system
and that e is so small that there are no other zeros in-
side Se

1 . We get
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indz S

S k
k

n
k

k

n

l
l l k

n
k

k

n

l
l l k

n

S k
k k

k

n

l l
l l k

n

k

n

k kS k

j
v i

v dv

v

i v
a F e dz a

F
z

F dz a
F
z

F e

i v
aa F dz

F
z

dz
F
z

F F

i F F
F e dz

=
Á

= <
�
!
  +

"
$
## >

= < +
�
��

�
�� >

= <

½ Í ½ Í ½

Í ½

Í

= = = ¡ = = ¡

= = ¡

=

1
2

1
2

1

1
2

1

1
2

1

2

2 1
1 1 1, 1 1,

1 2

2
1 1,

2

1
1

1

1

1

1

p

p
�
�

�
�

p
�
�

�
�

p
�

e

e

e

e

F
z

dz
F
z

e

ind F e

ind w

k k

z k
k

n

z k
k

n

j

j

�
�
�+

�
��

�
�� >

=

=

=

=

Í

Í

1 2

1
1

1

.

o

The algorithm uses linear factors because of their simple
behavior, as described in Theorem 2.

THEOREM 4. Let v : R2 → R2 ⊂ G2 be the vector field
v r E z z e( ) ( , )= 1  with

E z z a z b z ck k k
k

n

,0 5 2 7= + +
=
½

1

,    (38)

|ak| ≠ |bk| and let zk be the unique zero of a z b z ck k k+ + .

Then, v has zeros at zj, j = 1, …, n and the Poincaré index

of v at zj is the sum of the indices of the ( )a z b z c ek k k+ + 1

at zj.

PROOF. Special case of Theorem 3. o

7 THE ALGORITHM

This section shows a way for the visualization of nonlinear
vector field topology.

Our central point is that, in conventional approaches,
each grid cell contains a linear or bilinear vector field and
cannot model a nonlinear local behavior. This can be seen in
an unstructured grid consisting of triangles. If one ap-
proximates the triangles by linear interpolation, each trian-
gle only contains one critical point but, in reality, there may
be more inside. The key for a solution is to analyze the data
to extract information about the number and index of criti-
cal points and to choose an approximation in the light of
the theorems to allow several critical points if necessary.
Outside the areas with more than one critical point, we use
linear interpolation to keep the algorithm fast.

The basic idea is that a critical point has topological im-
plications into the field if its Poincaré index is different
from zero. The effect of the piecewise linear behavior can be
seen in Fig. 4. There is a monkey saddle in one triangle, but,
in a piecewise linear approximation, there will be two dif-
ferent triangles containing one saddle each.

This example tells how to find such situations. If several
critical points are in the same cell and have the same index,
one will notice close cells with critical points of that index
in the linear approach. These areas are found in the first
step and, then, we approximate with polynomials like the
ones in the last section. In our example above, one could use

v r a z b z c a z b z c e0 5 2 72 7= + + + +1 1 1 2 2 2 1 (39)

in this area and, then, one can get the saddles in the same
triangle.

Our algorithm includes, therefore, the following steps
for finding the appropriate approximation:

1)�Compute the Poincaré index around each triangle as-
suming linear interpolation along the edges. One gets
−1, 0, or +1.

2)�Build the regions of close triangles with possible
higher-order critical points.

a)� If there are two triangles with a common edge and
opposite index as in Fig. 5, mark them and save
the neighboring connection.

b)�If there are unmarked triangles with the same in-
dex and a common vertex, put all the triangles
with that vertex in a region as in Fig. 6. If one of
the triangles is marked in a), put its neighbor in
the region as in Fig. 7. If any of the triangles is al-
ready in a region, do not build this region. Other-
wise, mark all the triangles in this new region.

c)� If there are unmarked triangles A and B with the
same index and a triangle C with a common edge
with A and a common vertex V with B as in Fig. 8,
build a region consisting of A and all the triangles
having V as vertex. Similar to b), we look for tri-
angles which have been marked in a) and always
put the neighbors in the region. Again, if any tri-
angle in this new region is already in a region, do
not build this region.

3)� Compute the index of each region by just adding the
index of all triangles in that region. Then, set up a
polynomial approximation of the type

v r a z b z c a z b z c0 5 2 7 2 7= + + * + + *1 1 1 2 2 2

K * + +a z b z c en n n2 7 1.        (40)

Outside the regions from Step (2) ,we just do linear ap-
proximation of each triangle, so there is no change to the
conventional algorithm. The remaining steps consist of

Fig. 4. Indices of triangles around a triangle with two saddles.
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finding the critical points and separatrices and, finally,
visualizing the topological graphs like the figures in the
examples.

We are not maintaining continuity across the boundaries
at the moment, but are thinking about some kind of blend-
ing in an area close to the boundary of our regions to solve
this problem.

8 EXAMPLES

This section gives four examples of the algorithm. There are
always several simple critical points together with higher-
order critical points showing nonlinear behavior in the
field.

The first example shows a monkey saddle together with
three sinks and two saddles in Fig. 9. The data is given on a
40 × 40 quadratic grid which has been triangulated prior to
the algorithm. It is a rather simple example with some non-
linear behavior present.

Fig. 10 contains the second example with two dipoles, a
monkey saddle, and four simple critical points. The upper

right corner shows two elliptic sectors of the dipole where
the integration curves go back to the dipole. This kind of
global nonlinear behavior does not appear in piecewise
linear fields, where no integration curve goes back to the
critical point where it started. Around the monkey saddle,
one can see some artifacts in the separatrices which come
from the boundary between the piecewise linear outside
and the polynomial approximation around the monkey
saddle. This kind of artifact is one of the problems where
further research is necessary. The topological graph shows
how the higher-order singularities fit into the well-known
connections between the simple critical points. The data
was again given on a 40 × 40 quadratic grid.

In the third example in Fig. 11, there are 14 critical
points. Twelve points are of linear type and two of higher-
order. We have an elliptic sector below the dipole showing
nonlinear behavior. The artifacts in the separation curve
near the dipole are due to the boundary between polyno-
mial and linear approximation.

The last example in Fig. 12 shows two dipoles sur-
rounded by four saddle points and a source. There are four

Fig. 5. Triangles with opposite indices.

Fig. 6. A region with two triangles having positive index.

Fig. 7. A +2-region with +1/−1-pair.

Fig. 8. A more complicated region.
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elliptic sectors and one can see that all the separatrices tend
to dipoles along a common line similar to the theoretical
examples in [14]. We used a 40 × 40 quadratic grid for the
data.

9 CONCLUSION

We have presented an extension of our algorithm for the
visualization of nonlinear vector field topology. It is based
on the tight relation between topology and Clifford vector
field description which is proved in the paper. The key idea
is using a polynomial approximation with sufficient degree
in regions of possible nonlinear behavior.

The whole article discusses two-dimensional problems,
so the question about three-dimensional problems arises. A
solution will be subject to further research, but it will take
time. One reason is the qualitatively different behavior of
such flows.
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Fig. 9. A monkey saddle with several simple critical points.

Fig. 10. Seven critical points.

Fig 11. Fourteen critical points.

Fig. 12. Two interacting dipols with five simple critical points.
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